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Abstract. We show how generalized quark distributions in the nucleon describe the density of polarized
quarks in the impact parameter plane, both for longitudinal and transverse polarization of the quark
and the nucleon. This density representation entails positivity bounds including chiral-odd distributions,
which tighten the known bounds in the chiral-even sector. Using the quark equations of motion, we derive
relations between the moments of chiral-odd generalized parton distributions of twist two and twist three.
We exhibit the analogy between polarized quark distributions in impact parameter space and transverse
momentum dependent distribution functions.

1 Introduction

The distribution of transverse quark spin in the proton
remains one of the most intriguing and least known aspects
of nucleon structure. It has been the subject of numerous
theoretical studies, and there is a vigorous experimental
program aiming to measure the transversity distribution
h1(x) in present or planned experiments. Recent overviews
and references can for instance be found in [1].

A wealth of information on the nucleon structure is
encoded in generalized parton distributions (GPDs), see
e.g. the reviews [2–4]. They admit a particularly intuitive
physical interpretation at zero skewness ξ, where after a
Fourier transform they describe how partons with given
longitudinal momentum are spatially distributed in the
transverse plane [5]. A remarkable spin effect in this repre-
sentation is that transverse nucleon polarization induces a
sideways shift in the quark density, whose size is related to
the anomalous magnetic moment of the nucleon and thus
quite substantial [6].

A relatively small number of studies have so far been
devoted to generalized transversity distributions, which
were introduced in [7–9]. Since the operator measuring
transversity is chiral-odd, it is notoriously difficult to find
processes where transversity distributions can be accessed
experimentally. For generalized transversity distributions
it is indeed not clear if this can be achieved in practice,
and at present there is only one type of process known
where this may be possible in principle [10]. There is how-
ever the prospect of gaining information from lattice QCD,
which provides a tool to calculate the Mellin moments of
generalized parton distributions. Several studies have been
performed for chiral-even distributions [11,12], and first re-

sults for chiral-odd ones have been presented in [13]. The
purpose of this paper is to take a closer look at the physical
interpretation and properties of these quantities.

In Sect. 2 we extend the analysis of [6] to generalized
transversity distributions and investigate the distribution
of transverse quark polarization in the impact parameter
plane. The result closely resembles the expressions for the
distribution of polarized quarks as a function of their trans-
verse momentum. In Sect. 3 we derive positivity bounds
which involve chiral-even and chiral-odddistributions, both
in impact parameter and in momentum representation. We
also give bounds that are valid for Mellin moments. Sec-
tion 4 is devoted to relations between distributions of twist
two and three resulting from the QCD equations of motion.
We summarize our findings in Sect. 5.

2 Polarized parton distributions
in the transverse plane

To begin with, let us recall the definitions for generalized
quark distributions in the proton. Following the conven-
tions of [3, 9, 14] the distributions of twist two read

F (x, ξ, t)

=
∫

dz−

4π
eixP+z− 〈p′| q̄(− 1

2 z)γ+q( 1
2 z)| p〉

∣∣∣
z+=0, z=0

=
1

2P+

[
H(x, ξ, t) ūγ+u + E(x, ξ, t) ū

iσ+α∆α

2m
u

]
,
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F̃ (x, ξ, t)

=
∫

dz−

4π
eixP+z− 〈p′| q̄(− 1

2 z)γ+γ5 q( 1
2 z)| p〉

∣∣∣
z+=0, z=0

=
1

2P+

[
H̃(x, ξ, t) ūγ+γ5u + Ẽ(x, ξ, t) ū

γ5∆
+

2m
u

]
,

F j
T (x, ξ, t) = −i

∫
dz−

4π
eixP+z−

× 〈p′| q̄(− 1
2 z) σ+jγ5 q( 1

2 z)| p〉
∣∣∣
z+=0, z=0

= − i

2P+

[
HT (x, ξ, t) ūσ+jγ5 u

+ H̃T (x, ξ, t) ū
ε+jαβ∆αPβ

m2 u

+ ET (x, ξ, t) ū
ε+jαβ∆αγβ

2m
u

+ ẼT (x, ξ, t) ū
ε+jαβPαγβ

m
u

]
. (1)

Corresponding to the quark-antiquark operator in their
definition, the distributions parameterizing F and F̃ are
referred to as chiral-even, and those parameterizing F j

T as
chiral-odd. The latter are also called quark helicity flip or
generalized transversity distributions. We use light-cone
coordinates v± = (v0 ± v3)/

√
2 for any four-vector v and

write its transverse part as v = (v1, v2). Scalar products of
boldface vectors are defined such that v2 ≥ 0, and Ro-
man indices i, j, k are understood to be restricted to
the two transverse directions. Our sign convention for the
totally antisymmetric tensor is ε0123 = 1. We use kine-
matical variables P = 1

2 (p + p′), ∆ = p′ − p, t = ∆2,
ξ = (p − p′)+/(p + p′)+ and denote the proton mass by
m. For better legibility we have not explicitly labeled the
polarization of the proton states 〈p′| and |p〉 and have omit-
ted the momentum and polarization labels of the proton
spinors ū and u. The definitions (1) hold in the light-cone
gauge A+ = 0, otherwise a Wilson line appears between
the quark field and its conjugate.

We will find that in all expressions of this paper the
distribution ET appears in the combination ET + 2H̃T ,
so that one may regard ET + 2H̃T as a more fundamental
quantity than ET . Using the Gordon identity one can make
this combination appear already in the decomposition of
the matrix element F j

T (x, ξ, t), rewriting

HT ūσ+jγ5 u + H̃T ū
ε+jαβ∆αPβ

m2 u + ET ū
ε+jαβ∆αγβ

2m
u

= HT ūσ+jγ5 u − H̃T ū
ε+jαβ ∆α iσβδ ∆δ

2m2 u

+ (ET + 2H̃T ) ū
ε+jαβ∆αγβ

2m
u

=
(
HT − t

2m2 H̃T

)
ūσ+jγ5 u

+ H̃T ū
∆jσ+αγ5∆α − ∆+σjαγ5∆α

2m2 u

+ (ET + 2H̃T ) ū
ε+jαβ∆αγβ

2m
u . (2)

In this and the next section we restrict ourselves to
skewness ξ = 0, where generalized parton distributions
have a probability interpretation when transformed to im-
pact parameter space [5]. To make this explicit we form
wave packets

|p+, b〉 =
∫

d2p

(2π)2
e−ibp |p〉 (3)

from the states states |p〉 with definite four-momentum,
where it is understood that the integration over p is done at
fixed p+ with p− = (m2 +p2)/(2p+). The state |p+, b〉 has
definite plus-momentum p+ and definite impact parameter
b, i.e., it is localized at position b in the x-y plane. Further
analysis shows that b is the “center of momentum” of the
partons in the proton [15], given in terms of their plus-
momenta and transverse positions as b =

∑
i p+

i bi /
∑

i p+
i .

A two-dimensional Fourier transform gives

F (x, b) =
∫

d2∆

(2π)2
e−ib∆ F (x, 0,−∆2) (4)

= N−1
∫

dz−

4π
eixp+z− 〈

p+,0
∣∣∣ q̄(z2)γ+q(z1)

∣∣∣ p+,0
〉

with z+
1 = z+

2 = 0, z1 = z2 = b, and z−1 = −z−2 = 1
2 z−.

Here we have used translation invariance to shift the quark-
antiquark operator to transverse position b and the impact
parameter of the proton to the origin. The normalization
factor N = (2π)−2

∫
d2p is singular like a delta-function,

which canbe avoided if instead of (3) one takeswave packets
smeared out in impact parameter space [5,16]. In analogy
to (4) we define matrix elements F̃ (x, b) and F j

T (x, b). The
impact parameter distribution

H(x, b2) =
∫

d2∆

(2π)2
e−ib∆ H(x, 0,−∆2) (5)

and its analogs E(x, b2), H̃(x, b2), HT (x, b2), etc. depend
on b only via its square thanks to rotation invariance. We
see in (4) that the Fourier transformation has made the
matrix element diagonal in the plus-momentum and the
impact parameter of the proton states. If we also take the
same polarization for these states, the matrix element be-
comes an expectation value and thus acquires a probability
interpretation akin to the usual parton densities.

The wave packets (3) involve proton momenta which
are not along the z-axis, and the spin states for this case
have to be chosen with some care. It is useful to take
states of definite light-cone helicity [17]. A proton state of
momentum p with positive (negative) light-cone helicity is
transformed to a proton state at rest with spin along the
positive (negative) z-axis by aLorentz transformationL(p),
which is the combination of a transverse and a longitudinal
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boost (see Sect. 3.5.1 of [3] for a brief summary). The light-
cone helicity of a state is invariant under boosts along
the z-axis, and for large p+ light-cone helicity coincides
with the usual helicity up to effects of order m/p+. The
superposition ( |+〉 + eiϕ|−〉 )/

√
2 of states with positive

and negative light-cone helicity is called a state of definite
transversity, which can be seen as the light-cone analog
of definite transverse polarization. According to what we
just discussed, L(p) indeed transforms this state to a state
at rest whose spin vector is given by S = (cos ϕ, sin ϕ)
and Sz = 0. A state with both longitudinal and transverse
polarization can be written as

|Λ, S〉 = cos( 1
2 ϑ) |+〉 + sin( 1

2 ϑ) eiϕ|−〉 (6)

and is transformed by L(p) to a state at rest with spin vector
given by S = (sinϑ cos ϕ, sin ϑ sin ϕ) and Sz = cos ϑ. We
will therefore use S and Λ = Sz to characterize these
states. Combining them to wave packets (3) we finally
obtain states suitable for interpreting the matrix elements
F (x, b), F̃ (x, b) and F j

T (x, b). For ease of language we will
call S and Λ the transverse and longitudinal polarization
of the proton. In the following it will be important that
they respectively transform like a usual spin vector and
usual helicity under rotations in the x-y plane and under
parity or time reversal.

For quarks and antiquarks we consider light-cone he-
licity states as well. Note that the quark operators in (4)
are at definite transverse position and thus correspond to
integrals over the quark or antiquark transverse momen-
tum. Quarks with light-cone helicity λ = ±1 are projected
out by the operator 1

2 q̄ γ+[1 + λγ5] q. Evaluating the pro-
ton spinor products in (1) for the states (6) and Fourier
transforming the result, we obtain the density of quarks
with light-cone helicity λ, light-cone momentum fraction
x and transverse distance b from the proton center as

1
2

[
F (x, b) + λF̃ (x, b)

]
(7)

=
1
2

[
H(x, b2) − Siεijbj 1

m

∂

∂b2 E(x, b2) + λΛH̃(x, b2)

]

for x > 0, where repeated Roman indices are to be summed
over. For x < 0 the density of antiquarks with light-cone
helicityλ, light-conemomentum fraction−x and transverse
position b is given by 1

2 [−F (x, b) + λF̃ (x, b) ]. It readily
follows from the transformation properties of q̄γ+q and
q̄γ+γ5 q under charge conjugation that in going from quark
to antiquark densities one has to change the sign of F but
not of F̃ . The result (7) is well-known and for instance
discussed in [6]. The term with H̃ reflects the difference
in density of quarks with helicity equal or opposite to the
proton helicity.More remarkably, the termwithE describes
a sideways shift in the unpolarized quark density when the
proton is transversely polarized.

We now discuss transverse quark and antiquark polar-
ization, which in analogy to our above discussion we define
as the superposition ( |+〉 + eiχ|−〉 )/

√
2 of positive and

negative light-cone helicities, with a transverse spin vector

s = (cos χ, sin χ). Quarks with transverse polarization s
are projected out by the operator 1

2 q̄γ+[1 + (sγ)γ5] q =
1
2 q̄ [γ+ − sjiσ+jγ5] q, and their density is

1
2

[
F + siF i

T

]
=

1
2

[
H − Siεijbj 1

m
E′

− siεijbj 1
m

(
E′T + 2H̃ ′T

)
+ siSi

(
HT − 1

4m2 ∆bH̃T

)
+ si(2bibj − b2δij)Sj 1

m2 H̃ ′′T

]
(8)

for x > 0. The density of antiquarks with transverse po-
larization s and light-cone momentum fraction −x is given
by − 1

2 [F (x, b)+siF i
T (x, b) ]. Here and in the following it is

understood that when nothing else is indicated, the matrix
elements F , F̃ , F j

T and the distributions H, E, H̃, HT etc.
are functions of x and b as given in (4) and (5). We write
b =

√
b2 so that b2 = b2 and ∂/∂b2 = ∂/∂b2, and we use

the shorthand

f ′ =
∂

∂b2 f, f ′′ =
( ∂

∂b2

)2
f (9)

for the derivatives and

∆bf =
∂

∂bi

∂

∂bi
f = 4

∂

∂b2

(
b2 ∂

∂b2

)
f (10)

for the two-dimensional Laplace operator acting on func-
tions f that depend on b only via its square. In (8) we
have further introduced the two-dimensional antisymmet-
ric tensor εij with ε12 = −ε21 = 1 and ε11 = ε22 = 0.

The term with E′T + 2H̃ ′T in (8) describes a sideways
shift in the distribution of transversely polarized quarks
in an unpolarized proton, whereas the last two terms in
that expression reflect a correlation in the quark density
between the transverse polarizations of quark and proton.
The structures which break rotational symmetry in the
density (8) are

Siεijbj = b sin φ,

siεijbj = b sin(φ − χ),

si(2bibj − b2δij)Sj = b2 cos(χ − 2φ), (11)

where we have parameterized b = b (cos φ, sin φ) and taken
S = (1, 0) for simplicity. For illustration we show density
plots for b exp[−b2/b2

0] sinφ and b2 exp[−b2/b2
0] cos(2φ) in

Fig. 1, where the exponentials are taken to mimic the im-
pact parameter dependence of the relevant parton distri-
butions.

Integrating the densities (7) and (8) over all impact
parameters one obtains generalized parton distributions in
momentum space at t = 0, namely∫

d2b
[
F (x, b) + λF̃ (x, b)

]
(12)

= H(x, 0, 0) + λΛH̃(x, 0, 0) = f1(x) + λΛ g1(x) ,
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Fig. 1. Density plots in the impact parameter
plane for the functions b exp[−b2/b2

0] sin φ (left)
and b2 exp[−b2/b2

0] cos(2φ) (right), with b0 =
0.5 fm. These functions illustrate the terms in
the quark density (8) which break rotational
symmetry, as explained after (11). Dark areas
represent high densities

∫
d2b

[
F (x, b) + siF i

T (x, b)
]

(13)

= H(x, 0, 0) + siSi HT (x, 0, 0) = f1(x) + siSi h1(x) .

Here we have used that GPDs in the forward limit ξ = 0
and t = 0 reduce to the usual parton densities, namely

H(x, 0, 0) = f1(x), H̃(x, 0, 0) = g1(x),

HT (x, 0, 0) = h1(x) (14)

for x > 0, where f1 denotes the unpolarized quark dis-
tribution, g1 the quark helicity distribution, and h1 the
quark transversity distribution (another common notation
is f1 = q, g1 = ∆q and h1 = δq). Corresponding relations
involving antiquark distributions hold for x < 0. Weighting
the impact parameter distributions with b2 before integra-
tion, one obtains derivatives at t = 0,∫

d2b b2
(
F + λF̃

)
=

[
4

∂

∂t

(
H + λΛH̃

)]
t=0

, (15)

∫
d2b b2

(
F + siF i

T

)
=

[
4

∂

∂t

(
H + siSi

[
HT − t

4m2 H̃T

])]
t=0

, (16)

where we use the subscript t = 0 to indicate that the
GPDs are taken in momentum space as in (1), with ξ = 0
as always in this and the next section. The ratio of the
integrals in (15) and (12) or in (16) and (13) thus gives
the average squared impact parameter b2 of quarks with
given polarization and plus-momentum fraction. The av-
erage sideways shift in the impact parameter distribution
due to the transverse polarization of either the quark or
the proton is obtained from∫

d2b bj
(
F + siF i

T

)
=

[
1

2m

(
SiεijE + siεij(ET + 2H̃T )

)]
t=0

(17)

normalized to the integral in (13). This shift is more in-
volved than in the case of longitudinally polarized or un-
polarized quarks,∫

d2b bj
(
F + λF̃

)
=

∫
d2b bj F =

[
1

2m
SiεijE

]
t=0

,

(18)
which has been discussed in some detail in [6]. Finally, the
average distortion of the impact parameter density due to
the last term in (8) is characterized by∫

d2b (2bjbk − b2δjk)
(
F + siF i

T

)
=

[
1

m2 (sjSk + Sjsk − siSi δjk) H̃T

]
t=0

. (19)

We note in (7) and (8) that there is no polarization effect
in the impact parameter distributions for longitudinally
polarized quarks in a transversely polarized proton and
vice versa. This is because the only structures describing
such effects which are allowed by parity conservation are
λSibi or Λsibi. They are odd under time reversal and hence
forbidden. This corresponds to the fact that the generalized
distributions Ẽ and ẼT in (1) do not appear in the matrix
elements at ξ = 0, the former because it is multiplied with
∆+ = −2ξP+ in its definition and the latter because it is
an odd function of ξ [9].

It is instructive to compare our impact parameter den-
sities with the densities for quarks of definite light-cone
momentum fraction x and transverse momentum k, which
play a prominent role in the description of spin asymme-
tries in a variety of hard processes. They can be defined
from the correlation function

Φαβ(x,k) =
∫

dz−

4π

d2z

(2π)2
eixp+z−

e−ikz

×〈p| q̄β(− 1
2 z) W [− 1

2 z, 1
2 z] qα( 1

2 z)| p〉
∣∣∣
z+=0

, (20)

where it is understood that the proton states have zero
transverse momentum. The Wilson line W has recently
been recognized as essential in the definition, since differ-
ent physical processes require different paths leading from
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− 1
2 z to 1

2 z and can actually give different correlation func-
tions (see e.g. [18] and references therein). Physically, the
gluons resummed in the Wilson lines describe interactions
of spectator partons in the process where the correlation
function appears, and the corresponding parton distribu-
tions describe the density of quarks or antiquarks in the
presence of these interactions. This subtlety did not ap-
pear in the generalized parton distributions (1) and their
impact parameter analogs, because there the quark field
and its conjugate are separated by a light-like distance and
the relevant Wilson line just runs along the light-cone be-
tween − 1

2 z and 1
2 z. Projecting out densities for quarks of

definite longitudinal or transverse polarization from (20),
one obtains [19]

1
2

Tr
[
(γ+ + λγ+γ5) Φ

]
=

1
2

[
f1 + Siεijkj 1

m
f⊥1T

+ λΛ g1 + λ Siki 1
m

g1T

]
,

1
2

Tr
[
(γ+ − sjiσ+jγ5) Φ

]
=

1
2

[
f1 + Siεijkj 1

m
f⊥1T

+ siεijkj 1
m

h⊥1 + siSih1

+ si(2kikj − k2δij)Sj 1
2m2 h⊥1T + Λ siki 1

m
h⊥1L

]
, (21)

where we have used the notation of Boer, Mulders, Tanger-
man [20, 21] for the distribution functions, which depend
on x and k2. Integrating over k one recovers the distribu-
tions f1(x) =

∫
d2k f1(x,k2), g1(x) =

∫
d2k g1(x,k2) and

h1(x) =
∫

d2k h1(x,k2) we already encountered in (14).
The tensor structures in (21) are analogs of those in (7)
and (8), with k taking the role of b. The corresponding anal-
ogy between transverse momentum dependent and impact
parameter dependent distributions reads

f1 ↔ H, f⊥1T ↔ − E′, g1 ↔ H̃,

h1 ↔ HT − ∆bH̃T /(4m2) ,

h⊥1 ↔ − (E′T + 2H̃ ′T ) , h⊥1T ↔ 2H̃ ′′T . (22)

The impact parameter distributions which would corre-
spond to g1T and h⊥1L vanish because of time invariance, as
discussed above. Notice that the momentum k changes sign
under time reversal, whereas the position vector b does not.
The structures λ Siki and Λ siki describing polarization ef-
fects for longitudinally polarized quarks in a transversely
polarized proton and vice versa are hence time reversal
invariant. On the other hand, both Siεijkj and siεijkj are
odd under time reversal. The corresponding distributions
f⊥1T and h⊥1 (which respectively are the Sivers and Boer-
Mulders functions) are however not constrained to be zero
by time reversal invariance. This is because the Wilson
line in the correlation function for relevant processes like
semi-inclusive deep inelastic scattering or Drell-Yan pair

production have paths that are not invariant under time
reversal, contrary to the paths appearing in the impact pa-
rameter distributions discussed above. Time reversal thus
connects transverse momentum dependent distributions
with different Wilson lines, but does not constrain them to
be zero [22]. We finally note that, beyond the formal cor-
respondence of the functions E(x, b) in (8) and f⊥1T (x,k)
in (21), a deep dynamical connection between them has
recently been proposed in [23,24].

We have seen in (12) to (19) how the impact parameter
distributions can be reduced to distributions only depend-
ing on the momentum fraction x by taking appropriate
integrals over b. Conversely, one obtains distributions only
depending on b by integrating over x. Taking Mellin mo-
ments in x, we obtain expectation values of the well-known
local twist-two operators in proton states localized at zero
impact parameter,

(p+)n

∫ 1

−1
dx xn−1F (x, b)

=
1
2

N−1
〈
p+,0

∣∣∣ q̄γ+ (iD
↔+)n−1q

∣∣∣ p+,0
〉
,

(p+)n

∫ 1

−1
dx xn−1F̃ (x, b)

=
1
2

N−1
〈
p+,0

∣∣∣ q̄γ+γ5 (iD
↔+)n−1q

∣∣∣ p+,0
〉
,

(p+)n

∫ 1

−1
dx xn−1F j

T (x, b)

= − i

2
N−1

〈
p+,0

∣∣∣ q̄σ+jγ5 (iD
↔+)n−1q

∣∣∣ p+,0
〉
, (23)

where D
↔µ = 1

2 (D
→µ − D

←µ) = 1
2 (∂
→µ − ∂

←µ) − igAµ, and all
field operators are to be taken at position z with z+ =
z− = 0 and z = b. To obtain matrix elements of local
operators, one has to integrate over both positive and neg-
ative x and hence not only combines the information from
different momentum fractions but also from quarks and
antiquarks. According to the charge conjugation proper-
ties we discussed after (7) and (8), moments with odd n in
(23) correspond to the sum of quark and antiquark den-
sities for F̃ and to their difference for F and F j

T , whereas
for moments with even n the situation is reversed. The
lowest x moments of F and 1

2 [F + siF i
T ] hence describe

the transverse distribution of unpolarized and transversely
polarized quarks minus antiquarks in the proton, respec-
tively. Higher x moments give the transverse distributions
of quarks plus or minus antiquarks weighted with a power
of their plus-momentum fraction. In contrast, the x mo-
ments of 1

2 [F +λF̃ ] describe the transverse distribution of
quarks plus or minus antiquarks with chirality λ (i.e. quarks
with helicity λ and antiquarks with helicity −λ). A two-
dimensional Fourier transform turns the expectation values
(23) into matrix elements for proton states of definite mo-
menta, which are parameterized by form factors depending
on the squared momentum transfer t. These form factors
can be evaluated in lattice QCD since the corresponding
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Fig. 2. The vector fields εijbj exp[−b2/b2
0] (left)

and (2bibj − b2δij)Sj exp[−b2/b2
0] (right) with

Si along the x-axis and b0 = 0.5 fm. They illus-
trate the form of two terms in the decomposi-
tion of F i

T (x, b), which describes the transverse
polarization of quarks in the impact parameter
plane. The third term in the decomposition is
a field parallel to Si

operators are local and thus allow continuation into Eu-
clidean space. It is amusing that after a Fourier transform
they become quantities (23) whose physical interpretation
is naturally given in a light-cone framework.

Note that our interpretation of form factors differs from
the well-known interpretation due to Sachs [25], where their
three-dimensional Fourier transforms yield densities in a
static proton state. That framework has been extended to
generalized parton distributions as functions of x, ξ and t
in [26]. It is limited by ambiguities due to the impossibil-
ity to localize a particle more accurately than within its
Compton wavelength. Localization in only two dimensions
is not affected by this limitation, and the wave packets
(3) are indeed eigenstates of a two-dimensional position
operator [17]. The price to pay for this is the loss of mani-
fest three-dimensional rotation invariance in the light-cone
framework. In return, the mixed representation of position
space in two dimensions and plus-momentum in the third
allows one to boost to a frame where the proton moves fast,
which is a natural frame for the physical interpretation of
quark and antiquark degrees of freedom.

So far we have interpreted 1
2 [F + siF i

T ] in (8) as the
density of quarks with a given transverse polarization s.
The vector field FT (x, b) gives the direction in which the
transverse polarization of quarks is largest, and its size
|FT (x, b)| is the difference of densitieswith quarks polarized
along or opposite to this direction. According to (8) we
can write F i

T as the superposition of three terms, given
by functions of b2 times the vectors Si, εijbj and (2bibj −
b2δij)Sj . The field lines of the term with εijbj are circles
around the origin, and those of the term with (2bibj −
b2δij)Sj are circles going through the origin with a tangent
along the proton polarization Si, as illustrated in Fig. 2.

The divergence and the curl of the field F i
T (x, b) re-

spectively are

∂

∂bi
F i

T = 2SibiH ′T ,

∂

∂bi
εijF j

T =
1

2m
∆b

(
ET + 2H̃T

)
− 2Siεijbj ∂

∂b2

(
HT − 1

2m2 ∆bH̃T

)
. (24)

They can be rewritten as matrix elements of operators
which are total derivatives. This is readily seen in Mellin

space, where we have

(p+)n

∫ 1

−1
dx xn−1 ∂

∂bi
F i

T (x, b)

= − i

2
N−1

〈
p+,0

∣∣∣ ∂µ

[
q̄σ+µγ5 (iD

↔+)n−1q
] ∣∣∣ p+,0

〉
,

(p+)n

∫ 1

−1
dx xn−1 ∂

∂bi
εijF j

T (x, b)

=
1
2

N−1
〈
p+,0

∣∣∣ ∂µ

[
q̄σ+µ(iD

↔+)n−1q
] ∣∣∣ p+,0

〉
, (25)

with all field operators evaluated at z+ = z− = 0andz = b.
To obtain (25) we have used the representation (23) and the
fact that the first term in ∂+[q̄σ+− . . . q] + ∂i[q̄σ+i . . . q] =
∂µ[q̄σ+µ . . . q] vanishes when taking a matrix element be-
tween states of equal plus-momentum. The operators in
(25) can be rewritten using the equations of motion as we
will discuss in Sect. 4.

The Mellin moments of the impact parameter distribu-
tions H(x, b2), E(x, b2) etc. are Fourier transforms of form
factors in momentum space, which are denoted by

An0(t) =
∫ 1

−1
dx xn−1H(x, 0, t),

Bn0(t) =
∫ 1

−1
dx xn−1E(x, 0, t),

ATn0(t) =
∫ 1

−1
dx xn−1HT (x, 0, t),

BTn0(t) =
∫ 1

−1
dx xn−1ET (x, 0, t),

ÃTn0(t) =
∫ 1

−1
dx xn−1H̃T (x, 0, t) (26)

in a standard notation (see Sect. 4). These form factors can
be calculated in lattice QCD [11–13], where it has become
customary to fit them to a dipole form. For reasons that
will be clear shortly, let us consider the more general power-
law ansatz

A(t) =
A(0)

(1 − t/m2
A)p

, (27)
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where the power p and the mass mA are free parameters
for a given form factor A(t). Note that in the limit p → ∞
at fixed m2

A/p this ansatz gives an exponential in t. The
Fourier transformation of (27) to impact parameter space
leads to the modified Bessel function,

A(b2) = C (mAb)p−1Kp−1(mAb) ,

C =
m2

A

2pπΓ (p)
A(0) , (28)

and the derivatives defined in (9) and (10) are

A′(b2) = − 1
2 Cm2

A (mAb)p−2Kp−2(mAb) ,

A′′(b2) = 1
4 Cm4

A (mAb)p−3Kp−3(mAb) ,

∆bA(b2) = −Cm2
A (mAb)p−2

×
[
2Kp−2(mAb) − mAb Kp−3(mAb)

]
. (29)

A parameterization of the type (27) is in the first instance
only valid in the t range where the form factor has been
fitted. In particular, lattice computations have an upper
limit |t|max on the squared momentum transfer given by
the lattice parameters. This corresponds to a limited reso-
lution of order (|t|max)−1/2 on the impact parameter [16].
Furthermore, results obtained on a finite lattice cannot give
direct information on the behavior of quark densities at
impact parameters much larger than the lattice size. Nev-
ertheless, one may want to require that a parameterization
leads at least to a physically plausible behavior of the im-
pact parameter density at small and large b. To analyze
this behavior we need the relations

K0(z) ∼
z→0

log
2
z

,

Kp(z) ∼
z→0

2p−1Γ (p)
zp

for p > 0,

Kp(z) ∼
z→∞ e−z

√
π

2z
(30)

and K−p(z) = Kp(z). At large b, each term in the Mellin
moments of the densities (7) and (8) then falls off like
(mAb)p−3/2 e−mA b. For the limit b → 0 it seems reason-
able to require a regular behavior of the impact parameter

density, which implies that no term should diverge and that
bjE′, bj(E′T + 2H̃ ′T ) and (2bibj − b2δij)H̃ ′′T should vanish
at b = 0, since they have a nontrivial dependence on the
azimuthal angle φ. This restricts p in the parameterization
of moments to p > 1 for H, H̃ and HT , to p > 3/2 for E

and ET , and to p > 2 for H̃T . The terms with H, H̃, HT

and ∆bH̃T in the moments of (7) and (8) then all take fi-
nite values at b = 0. In momentum space these restrictions
are tantamount to requiring that the Mellin moments of
F (x, 0, t), F̃ (x, 0, t), F j

T (x, 0, t) decrease faster than 1/t for
t → −∞, as is readily seen when the proton spinor products
in (1) are evaluated [9]. Note in particular that a dipole
ansatz with p = 2 for ÃTn0(t) gives only a 1/t falloff in the
nth moment of F i

T (x, 0, t) and a corresponding logarithmic
divergence at b = 0 in the nth moment of F i

T (x, b).
To illustrate how the transverse spin density in the

proton may look like, we focus now on the first moment
1
2

∫ 1
−1 dx [F (x, b) + siF i

T (x, b)], which gives the difference
of impact parameter densities for quarks and antiquarks
(for ease of language we will simply speak of quarks in the
following). As a numerical example we take a parameteri-
zation (27) with p = 2 for A10(t), B10(t), AT10(t) and p = 3
for BT10(t), ÃT10(t). We set the mass parameters mA to
1 GeV for A10(t), B10(t) and to 1.5 GeV for the three other
form factors, and take

A10(0) = 2, B10(0) = 3,

AT10(0) = 1, BT10(0) = 6, ÃT10(0) = −1 (31)

for their values at t = 0. This set of parameterizations is
a rough approximation of preliminary results from lattice
calculations [27] for the first moments of generalized u-
quark distributions (where |t| goes up to about 3.5 GeV2 ≈
(0.1 fm)−2 and lattice sizes are between 1.5 and 2.2 fm). We
stress that it is meant to be indicative and not a precise
representation of those results. We note that A10(0) =
2 correctly gives the number of valence u-quarks in the
proton, whereas B10(0) = 3 is too large compared with
the value 1.67 one obtains from the measured magnetic
moments of proton and neutron (recall that B10(t) is the
relevant quark flavor contribution to the electromagnetic
Pauli form factor).

In Fig. 3 we show the resulting first moment of the im-
pact parameter density for unpolarized quarks in a trans-

Fig. 3. Left: Illustration of the first moment∫ 1
−1 dx F (x, b) of the impact parameter den-

sity for unpolarized u-quarks in a proton with
transverse spin vector S = (1, 0). Right: The
same for the first moment 1

2

∫ 1
−1 dx [F (x, b) +

siF i
T (x, b)] of the distribution of u-quarks with

transverse spin vector s = (1, 0) in an unpolar-
ized proton. Dark areas represent the highest
and light areas the lowest values of the density.
Further explanation is given in the text
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Fig. 4. Illustration of the lowest moment
1
2

∫ 1
−1 dx [F (x, b)+siF i

T (x, b)] for u-quarks in a
proton with transverse spin vector S = (1, 0).
The transverse quark spin vector is s = (1, 0)
in the left plot and s = (0, 1) in the right plot

Fig. 5. Illustration of the lowest moment∫ 1
−1 dx F i

T (x, b) of the vector field describing
the transverse polarization of u-quarks in an
unpolarized proton (left) and in a proton with
transverse spin in the x-direction (right)

versely polarized proton and for transversely polarized
quarks in an unpolarized proton. The dipole-type struc-
tures due to SiεijbjE′ and siεijbj(E′T + 2H̃ ′T ) are clearly
visible, reflecting the large values in (31) for B10 and
BT10 +2ÃT10 at t = 0. The sum of both dipoles dominates
the structure of the distribution for transverse polarization
of both quark and proton, as is seen in Fig. 4, whereas the
quadrupole-type term si(2bibj − b2δij)SjH̃ ′′T is less promi-
nent in our numerical example.Wenote that the twodipoles
terms SiεijbjE′ and siεijbj(E′T + 2H̃ ′T ) tend to cancel if
quark and proton spin are opposite to each other, and the
resulting density (not shown here) is rather sensitive to the
precise values in the form factor parameterizations. Fig-
ure 5 finally shows the lowest moment of the vector field
F i

T (x, b) describing the transverse quark polarization in a
proton with or without transverse polarization.

3 The spin matrix and positivity constraints

In the previous section we have discussed the density of
quarks with transverse or longitudinal polarization in a

transversely or longitudinally polarized proton. Densities
for arbitrary polarization states can be obtained from the
spin matrix in the light-cone helicity basis

M(Λ′λ′)(Λλ)(x, b) = N−1
∫

dz−

4π
eixp+z−

×
〈
p+,0, Λ′

∣∣∣ q̄(z2)Γλ′λ q(z1)
∣∣∣ p+,0, Λ

〉
(32)

with z+
1 = z+

2 = 0, z1 = z2 = b, and z−1 = −z−2 = 1
2 z−.

Here Λ′ and Λ denote light-cone helicities of the proton
states, and definite light-cone helicities λ′ and λ of the
quark are projected out by the Dirac matrices (see e.g. [9])

Γ++ = γ+(1 + γ5), Γ−+ = −iσ+1(1 + γ5),

Γ−− = γ+(1 − γ5), Γ+− = iσ+1(1 − γ5). (33)

The corresponding labeling of helicities in a handbag graph
is shown in Fig. 6a. The matrix M(Λ′λ′)(Λλ) reads as seen
in (34) (on next page) with proton-quark helicity combi-
nations ordered as (Λλ) = (++), (−+), (+−), (−−). Here
the GPDs are given in impact parameter space with the

x− x−

(a) (b)

ΛΛ

x

λ λ

x

λ λ

Λ Λ’ ’

’ ’

Fig. 6. Labeling of the proton and parton he-
licities in the matrix elements M(Λ′λ′)(Λλ) in
the quark region x > 0 aand the antiquark
region x < 0 b
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H + H̃ −ie−iφ b

m
E′ ieiφ b

m

(
E′T + 2H̃ ′T

)
2
(
HT − 1

4m2 ∆bH̃T

)
ieiφ b

m
E′ H − H̃ 2e2iφ b2

m2 H̃ ′′T ieiφ b

m

(
E′T + 2H̃ ′T

)
−ie−iφ b

m

(
E′T + 2H̃ ′T

)
2e−2iφ b2

m2 H̃ ′′T H − H̃ −ie−iφ b

m
E′

2
(
HT − 1

4m2 ∆bH̃T

)
−ie−iφ b

m

(
E′T + 2H̃ ′T

)
ieiφ b

m
E′ H + H̃


(34)



H + H̃
b

m
E′

b

m

(
E′T + 2H̃ ′T

)
2
(
HT − 1

4m2 ∆bH̃T

)
b

m
E′ H − H̃ −2

b2

m2 H̃ ′′T
b

m

(
E′T + 2H̃ ′T

)
b

m

(
E′T + 2H̃ ′T

)
−2

b2

m2 H̃ ′′T H − H̃
b

m
E′

2
(
HT − 1

4m2 ∆bH̃T

) b

m

(
E′T + 2H̃ ′T

) b

m
E′ H + H̃


(35)

notation specified after (8), and the azimuthal angle φ of
b is defined after (11). The quark density for an arbitrary
polarization state of proton and quark can be written as a
linear combination 1

2

∑
Λ′λ′Λλ (cΛ′λ′)∗M(Λ′λ′)(Λλ) cΛλ with

coefficients normalized to
∑

Λλ |cΛλ|2 = 1. This implies
that the matrix M(Λ′λ′)(Λλ) must be positive semidefinite.
Integration of (34) over b leads to the known spin ma-
trix for the forward distribution functions f1(x), g1(x),
h1(x) according to (14), and the positivity of the corre-
sponding eigenvalues gives immediately the Soffer bound
2|h1(x)| ≤ f1(x) + g1(x). Using the relations (22) we see
that the matrix (34) of impact parameter dependent dis-
tributions is the exact analog of the spin matrix for trans-
verse momentum dependent distribution functions, which
was discussed in [28].1

In order to simplify the following discussion, we change
basis by multiplying (34) with the diagonal matrix D =
diag(1, ieiφ,−ie−iφ, 1) from the right and with D† from the
left. This gives a matrix as seen in (35) (above) which is
purely real and depends on b but no longer on φ. Positivity
of the upper left 2×2 sub-matrix of (35) leads to the bound

b

m
|E′| ≤

√
H2 − H̃2, (36)

which has been discussed in [29]. Using the eigenvalues
of the full matrix (35), we can tighten these bounds by
including the tensor GPDs. With the abbreviations

a± = H ±
(
HT +

1
m2 H̃ ′T − 1

2m2 ∆bH̃T

)
,

1 To compare with the matrices given in [28] one must take
into account that in those papers the sign convention for the
Sivers function f⊥

1T is opposite to the convention from [21]
used here, and that the rows of the matrices in those papers
correspond to the indices (Λλ) rather than (Λ′λ′). We thank
A. Bacchetta for clarifying discussions on this issue.

b± = H̃ ±
(
HT − 1

m2 H̃ ′T
)

,

c± =
b

m

(
E′ ± E′T ± 2H̃ ′T

)
(37)

the four eigenvalues read

a+ +
√

b2
+ + c2

+ , a+ −
√

b2
+ + c2

+ ,

a− +
√

b2− + c2− , a− −
√

b2− + c2− . (38)

We see that they are related pairwise by changing the sign of
all chiral-odd distributions. This is tantamount to multiply-
ing the matrix (35) with diag(1, 1,−1,−1) from the left and
from the right, which does of course not change its eigen-
values. Positivity of the eigenvalues (38) gives the bounds

0 ≤ a± ,

c2
± ≤ a2

± − b2
± = (a± + b±)(a± − b±) , (39)

which in particular imply 0 ≤ a± + b± and 0 ≤ a± − b±.
They explicitely read∣∣∣ HT +

1
m2 H̃ ′T − 1

2m2 ∆bH̃T

∣∣∣ ≤ H (40)

and

b2

m2

(
E′ ± E′T ± 2H̃ ′T

)2

≤
(
H ± HT ± 1

m2 H̃ ′T ∓ 1
2m2 ∆bH̃T

)2

−
(
H̃ ± HT ∓ 1

m2 H̃ ′T
)2

. (41)

In the phenomenological study [30] it was found that the
bound (36) can indeed be very restrictive (and thus help-
ful) in reconstructing generalized parton distributions from
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experimental data. The tighter bounds (40) and (41) may
therefore be of practical value even with limited informa-
tion on the three additional chiral-odd distributions they
contain. As in the case of the usual parton distributions,
renormalization of the operators in (32) may destroy the
density interpretation of the impact parameter distribu-
tions. Closer analysis reveals that the bounds following
from positivity of the matrix M(Λ′λ′)(Λλ) should be valid
at a sufficiently high renormalization scale µ2 [31]. They
are stable under leading order evolution to higher scales,
as shown in [32].

Since both experimental information and results from
lattice QCD calculations are in the first instance given as
a function of t, it is useful to have bounds also directly in
momentum space. This can be achieved by applying to (41)
the method used in [29] for the simpler bound (36), where
the main ingredient is the Schwarz inequality. A method
leading to the same results is to multiply (35) from the
left and the right with diag(1, mb, mb, 1). In the resulting
matrix M̂ only even powers of b appear. Integrating over
b as 2π

∫∞
0 db b M̂(b2) =

∫
d2b M̂(b2), one obtains GPDs

and their derivatives at zero momentum transfer t = 0.
The result is still a positive semidefinite matrix, whose
eigenvalues have the form (38) with

a± =
[
H + H̃ + 4m2 ∂

∂t
(H − H̃) ± 2(HT − 2H̃T )

]
t=0

,

b± =
[
H + H̃ − 4m2 ∂

∂t
(H − H̃) ± 2(HT + 2H̃T )

]
t=0

,

c± =
[
2(E ± ET ± 2H̃T )

]
t=0

. (42)

This leads to the bounds[(
E ± ET ± 2H̃T

)2
]

t=0

(43)

≤
[(

H + H̃ ± 2HT

) (
4m2 ∂

∂t
(H − H̃) ∓ 4H̃T

) ]
t=0

,

where both expressions in large parentheses on the right-
hand side must be positive or zero according to our remark
after (39). The condition 0 ≤ [H + H̃ ±2HT ]t=0 is just the
Soffer bound.

Alternatively, we can multiply the matrix (35) from the
left and the right with diag(mb, 1, 1, mb) and then integrate
over b as described above. The eigenvalues have again the
structure of (38), and we obtain bounds[(

E ± ET ± 2H̃T

)2
]

t=0

≤
[(

H − H̃ ∓ 1
2m2

∫ t

−∞
dt′ H̃T (t′)

)

×
(
4m2 ∂

∂t
(H + H̃ ± 2HT ) ∓ 2H̃T

) ]
t=0

(44)

with both expressions in large parentheses on the right-
hand side positive or zero. They contain a function which
is non-local in momentum space, namely∫ 0

−∞
dtH̃T (t) = 4πH̃T (b = 0), (45)

which can be traced back to the integral
∫

d2b b2H̃ ′′T (b2)
in the derivation.

For reasons which will become clear shortly, certain ap-
plications require bounds which do not involve the distri-
bution H̃ . One such bound is simply obtained by omitting
the last term in (41), which together with (40) leads to

b

m

∣∣∣E′ ± E′T ± 2H̃ ′T
∣∣∣

≤ H ±
(
HT +

1
m2 H̃ ′T − 1

2m2 ∆bH̃T

)
. (46)

To obtain a bound in momentum space we multiply (46)
with mb, integrate over b, and use the Schwarz inequal-
ity in the forms

∫
d2b b g ≤ (

∫
d2b g)1/2 (

∫
d2b b2g)1/2 and∫

d2b f ≤ ∫
d2b |f |, following the method of [29]. This

leads to[(
E ± ET ± 2H̃T

)2
]

t=0

≤
[(

H ± HT ∓ 1
4m2

∫ t

−∞
dt′ H̃T (t′)

)

×
(
4m2 ∂

∂t
(H ± HT ) ∓ 3H̃T

) ]
t=0

, (47)

where both terms in large parentheses on the right-hand
side must be positive or zero. Alternatively one can add to
(35) the positive semidefinite matrix

H − H̃
b

m
E′ 0 0

b

m
E′ H + H̃ 0 0

0 0 H + H̃
b

m
E′

0 0
b

m
E′ H − H̃


(48)

and proceed as above. One then obtains bounds analogous
to (41) and to (43) and (44) by the replacements H → 2H,
E → 2E, H̃ → 0. They explicitly read

b2

m2

(
2E′ ± E′T ± 2H̃ ′T

)2

≤
(
2H ± HT ± 1

m2 H̃ ′T ∓ 1
2m2 ∆bH̃T

)2

−
(
HT − 1

m2 H̃ ′T
)2

(49)
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and [(
2E ± ET ± 2H̃T

)2
]

t=0

≤
[
4

(
H ± HT

) (
4m2 ∂

∂t
H ∓ 2H̃T

) ]
t=0

,

[(
2E ± ET ± 2H̃T

)2
]

t=0

≤
[
4

(
H ∓ 1

4m2

∫ t

−∞
dt′ H̃T (t′)

)

×
(
4m2 ∂

∂t
(H ± HT ) ∓ H̃T

) ]
t=0

. (50)

So far we have considered quark distributions. For an-
tiquarks we define the matrix M(Λ′λ′)(Λλ)(x, b) with x < 0
as in (32), but with the Dirac matrices Γλ′λ now reading

Γ++ = −γ+(1 − γ5), Γ−+ = iσ+1(1 + γ5),

Γ−− = −γ+(1 + γ5), Γ+− = −iσ+1(1 − γ5) (51)

instead of (33). A global minus sign compared with the
quark case arises because the order of the operators q̄ and
q in (32) has to be reversed to obtain a density operator
for antiquarks. To understand the signs in front of γ5,
recall that antiquarks with positive helicity have negative
chirality. One must finally keep in mind that the helicity
index λ refers to the parton on the left-hand side of the
handbag diagram as shown in Fig. 6. For antiquarks this
parton is annihilated by the operator q̄, and not by q as for
quarks. Comparing (51) with (33), we find that the spin
matrix M(Λ′λ′)(Λλ)(x, b) in the antiquark region x < 0
reads as in (34), but with the signs of all GPDs except H̃
reversed. It is positive semidefinite, and one readily obtains
bounds for antiquarks analogous to those we have given
for quarks.

Let us finally address the question of positivity bounds
for Mellin moments of generalized parton distributions at
ξ = 0, which are for instance relevant in lattice QCD
calculations. As discussed in the previous section, these
moments involve both the quark and antiquark regions,
x > 0 and x < 0. Clearly, it is only the sum of quark
and antiquark densities and not their difference for which
positivity is ensured. This leads us to consider the mo-
ments

∫ 1
−1 dx xn−1f(x, b2) with even n for all distributions

f except H̃, which is why we have derived bounds with-
out H̃. To derive bounds for the even moments, we can
add the positive semidefinite matrices

∫ 1
0 dx xn−1M(x, b)

and
∫ 0
−1 dx (−x)n−1M(x, b). The result involves Mellin mo-

ments
∫ 1
−1 dx xn−1f(x, b2) for all distributions f except H̃,

where instead one has
∫ 1
−1 dx xn−1 sgn(x)H̃(x, b2), which is

the matrix element of a highly nonlocal operator. Positivity
bounds are then obtained exactly as above, and we find that

the inequalities (46), (47) and (49), (50) also hold when we
replace all distributions with their even Mellin moments.

It may be interesting to see whether the bounds which
do involve H̃ also hold when we replace this distribution
by its Mellin moment

∫ 1
−1 dx xn−1H̃(x, b2), thus taking the

“wrong” sign in the antiquark region x < 0, or whether
the bounds given in this section also hold for odd Mellin
moments. This would signal that the antiquark contribu-
tion to the moments in question is sufficiently small to
not destroy positivity of the quark contribution, i.e. of the
matrix

∫ 1
0 dx xn−1M(x, b).

4 Equations of motion and distributions
of twist three

At the end of Sect. 2 we have encountered the total deriva-
tives of the chiral-odd operators which define transversity
distributions through the matrix element F j

T . Using the
Dirac equation for the quark field operator, we can rewrite
the local operators appearing in (25) as

∂µ

[
q̄σ+µγ5(iD

↔+)n−1q
]

= −2 q̄(iD
↔+)nγ5q

+
n∑

i=2

q̄(iD
↔+)i−2 σ+

µγ5 gGµ+(iD
↔+)n−iq , (52)

∂µ

[
q̄σ+µ(iD

↔+)n−1q
]

= −2 q̄(iD
↔+)nq

+
n∑

i=2

q̄(iD
↔+)i−2 σ+

µ gGµ+(iD
↔+)n−iq

+ 2mq q̄γ+(iD
↔+)n−1q (53)

for n ≥ 1, where we have used [D
→µ, D

↔+] = −igGµ+ and
∂µ[q̄σ+µ . . . q] = −iq̄ ( �D← γ+ + 2D

↔+ − γ+ �D→ ) . . . q. Apart
from the term proportional to the quark mass mq, the op-
erators on the right-hand sides are of twist three. They are
obtained by inserting covariant derivatives iD

↔+ into the
pseudoscalar or scalar quark current and into the quark-
antiquark-gluon operators q̄σ+

µγ5 gGµ+q or q̄σ+
µ gGµ+q

(which can be written in a number of ways using the re-
lations σλµγ5 = − 1

2 iελµαβσαβ and G̃λµ = 1
2 ελµαβGαβ).

These quark-antiquark-gluonoperators are chiral-oddpart-
ners of the operators obtained by inserting covariant deriva-
tives into q̄γ+gGµ+q and q̄γ+γ5 gG̃µ+q, which appear in
the virtual Compton amplitude at twist-three accuracy and
are well-known from inclusive deep inelastic scattering and
from deeply virtual Compton scattering, see e.g. [33]. The
forward matrix elements of the operators in (53) appear for
instance in Drell-Yan pair production and have been stud-
ied in detail in [34]. A review of their properties, including
their renormalization group evolution, can be found in [35].
Note that the derivative operator on the left-hand side of
(53) does not contribute to forward matrix elements.

The powers of covariant derivatives in (52) and (53)
can be resummed to obtain nonlocal operators on the light-
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cone, which may be written as

O2(x) =
∫ ∞
−∞

dz−

2π
hixP+z− q̄(− 1

2 z)W [− 1
2 z, 1

2 z] Γq( 1
2 z) ,

O3(x) = −i

∫ ∞
−∞

dz−

2π
eixP+z−

∫ 1
2 z−

− 1
2 z−

dy− q̄(− 1
2 z)

× W [− 1
2 z, y] Γµ gGµ+(y) W [y, 1

2 z] q( 1
2 z), (54)

where z+ = y+ = 0 and z = y = 0, the Wilson lines W are
along light-like paths, and Γ and Γµ denote Dirac matrices.
Local operators at position z = 0 are then obtained by

(P+)n

∫
dx xn−1 O2(x) = q̄ (iD

↔+)n−1Γq ,

(P+)n

∫
dx xn−1 O3(x)

=
n∑

i=2

q̄ (iD
↔+)i−2 Γµ gGµ+(iD

↔+)n−iq (55)

for n ≥ 1. Note that the integral
∫

dx O3(x) is zero. The
matrix elements of the nonlocal operators O2(x) and O3(x)
betweennucleon states are parameterizedby suitable gener-
alized parton distributions. Taking instead matrix elements
between the vacuum and a meson state one obtains meson
distribution amplitudes, and nonlocal versions of the equa-
tions of motion in (52) and (53) have been extensively used
in this context [36,37]. We note that the operators O3(x)
with Γµ = σ+µ or σ+µγ5 involve only “good” components
of the quark and gluon fields in the parlance of light-cone
quantization and hence admit an interpretation in terms
of parton degrees of freedom, unlike the operators O2(x)
with Γ = 1 or γ5, which are products of one “good” and
one “bad” field component [34,38].

With possible applications to lattice QCD calculations
in mind, we prefer here to work with the local operators
in (52) and (53) and the form factors parameterizing the
Mellin moments of GPDs. Instead of transforming (25)
back from impact parameter to momentum space, we can
directly use translation invariance to obtain 〈p′|∂µO|p〉 =
i∆µ〈p′|O|p〉 for a local operator O. From (52) and (53) we
then obtain relations between the form factors of twist-
two and twist-three operators. We give results for n =
1 and n = 2, their generalization to higher moments is
straightforward. In contrast to the previous sections, we
consider the general case where ξ need not be zero. Using
the constraints from parity and time reversal invariance,
the quark tensor current can be parameterized by

〈p′|q̄σλµγ5 q|p〉 = ūσλµγ5 u AT10(t) (56)

+ ū
ελµαβ∆αPβ

m2 u ÃT10(t) + ū
ελµαβ∆αγβ

2m
u BT10(t),

wherewe use the notation of [39]. An analog for the operator
q̄σλµq is readily obtained using σλµγ5 = − 1

2 iελµαβσαβ . For
the operator with one covariant derivative we have

AλµSµν〈p′|q̄σλµγ5 iD
↔νq|p〉

= AλµSµν

[
ūσλµγ5 u P νAT20(t)

+ū
ελµαβ∆αPβ

m2 u P νÃT20(t)

+ū
ελµαβ∆αγβ

2m
u P νBT20(t)

+ū
ελµαβPαγβ

m
u ∆νB̃T21(t)

]
, (57)

where Aλµ denotes antisymmetrization in λ and µ and
Sµν denotes symmetrization and subtraction of the trace.
Comparison with (1) readily gives∫ 1

−1
dx xn−1HT (x, ξ, t) = ATn0(t),∫ 1

−1
dx xn−1H̃T (x, ξ, t) = ÃTn0(t),∫ 1

−1
dx xn−1ET (x, ξ, t) = BTn0(t),∫ 1

−1
dx xẼT (x, ξ, t) = −2ξB̃T21(t) (58)

for n = 1, 2. In the forward limit we have HT (x, 0, 0) =
h1(x), so that ATn0(0) =

∫ 1
−1 dx xn−1h1(x) is a moment

of the usual transversity distribution. The contractions

∆µ〈p′|q̄σ+µγ5(iD
↔+)n−1q|p〉 ,

∆µ〈p′|q̄σ+µ(iD
↔+)n−1q|p 〉 (59)

needed for the equation of motion constraints (52) and (53)
respectively project out the form factors ATni, B̃Tni and
ATni, ÃTni, BTni.

For the twist-two operators constructed from the quark
vector current we have

〈p′|q̄γµ q|p〉 = ūγµu A10(t) + ū
iσµα∆α

2m
u B10(t) ,

Sµν〈p′|q̄γµ iD
↔νq|p〉 = Sµν

[
ūγµu P νA20(t)

+ ū
iσµα∆α

2m
u P νB20(t) + ū

∆µ∆ν

m
u C2(t)

]
(60)

and ∫ 1

−1
dx H(x, ξ, t) = A10(t),∫ 1

−1
dx E(x, ξ, t) = B10(t),∫ 1

−1
dx xH(x, ξ, t) = A20(t) + 4ξ2C2(t),∫ 1

−1
dx xE(x, ξ, t) = B20(t) − 4ξ2C2(t). (61)
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Note that A10(t) and B10(t) simply are the contributions
of the relevant quark flavor to the usual Dirac and Pauli
form factors, respectively. In the forward limit An0(0) =∫ 1
−1 dx xn−1f1(x) is amoment of theunpolarizedpartondis-

tribution.
We further parameterize the twist-three operators con-

structed from the quark scalar and pseudoscalar currents as

〈p′|q̄ iD
↔µq|p〉 = m ūγµu AS10 + 1

2 ūiσµα∆αu BS10 ,

Sµν〈p′|q̄ iD
↔µ iD

↔νq|p〉 = Sµν

[
m ūγµu P ν AS20

+ 1
2 ūiσµα∆αu P ν BS20 + ūu ∆µ∆ν CS2

]
,

〈p′|q̄ iD
↔µγ5q|p〉 = 1

2 ūγ5u Pµ B̃P10 ,

Sµν〈p′|q̄ iD
↔µ iD

↔νγ5q|p〉 = Sµν

[
m ūγµγ5u ∆ν ÃP21

+ 1
2 ūγ5u

(
PµP νB̃P20 + ∆µ∆νB̃P22

)]
, (62)

where we have omitted the argument t of the form factors
for brevity. Following [14, 39] we have assigned the sub-
scripts of form factors such that the first subscript gives
the spin of the operator (i.e. the number of Lorentz indices
in the symmetrization and subtraction of traces). The sec-
ond subscript counts the number of factors ∆ in the form
factor decomposition whose Lorentz index corresponds to
a covariant derivative on the operator side. In the forward
limit p = p′ only the form factors ASn0(t) survive in (62).
They are the moments of the chiral-odd parton distribution
e(x) defined in [20,34], given by ASn0(0) =

∫ 1
−1 dx xne(x).

Note that the local current q̄q without a covariant deriva-
tive (whose forward matrix element is related to the pion-
nucleon sigma-term) does not appear in the constraints
(53). In other words, the equation of motion constraint
involves xe(x) when resummed to x space, and thus is not
affected by the δ(x) singularity of e(x), discussed e.g. in
the recent review [40].

If we finally define form factors for the quark-antiquark-
gluon matrix elements as

Sµν〈p′|q̄σµ
α gGανq|p〉 = Sµν

[
2m ūγµu P ν AG20

+ ūiσµα∆αu P ν BG20 + 2ūu ∆µ∆ν CG2

]
,

Sµν〈p′|q̄σµ
αγ5 gGανq|p〉 = Sµν

[
2m ūγµγ5u ∆ν ÃG21

+ ūγ5u
(
PµP ν B̃G20 + ∆µ∆ν B̃G22

)]
, (63)

the equations of motion embodied in (52) and (53) give re-
lations

AS10 =
mq

m
A10 − t

4m2

(
BT10 + 2ÃT10

)
,

BS10 =
mq

m
B10 −

(
AT10 − t

2m2 ÃT10

)
,

B̃P10 = 2AT10 (64)

for the lowest moments. At this level the quark-antiquark-
gluon operators do not appear yet. In particular, at t = 0
the first relation in (64) gives the well-known sum rule∫ 1
−1 dx xe(x) = (mq/m)

∫ 1
−1dx f1(x), where the integral

over f1(x) at the right-hand side is just the number of
valence quarks with appropriate flavor [34]. The operators
involving gluons do appear in the relations between the
second moments,

AS20 − AG20 =
mq

m
A20 − t

4m2

(
BT20 + 2ÃT20

)
, (65)

BS20 − BG20 =
mq

m
B20 −

(
AT20 − t

2m2 ÃT20

)
,

CS2 − CG2 =
mq

m
C2 ,

ÃP21 − ÃG21 =
t

4m2 B̃T21 ,

B̃P20 − B̃G20 = 2AT20 , B̃P22 − B̃G22 = −B̃T21 .

In forward limit t = 0no connection is obtained between
moments of the twist-three distribution e(x) and moments
of the transversity distribution h1(x). Rather, form factors
of the twist-three operators which survive in the forward
limit are connected with form factors of the quark ten-
sor current which decouple in that limit, and vice versa.
Preliminary results on ATn0, ÃTn0 and BTn0 from lattice
calculations [27] suggest that these form factors are rather
large. If confirmed, this would imply that the twist-three
combination ASn0−AGn0 is quark mass suppressed at t = 0
but no longer small for −t ∼ m2, and that the form factor
combinations BSn0 − BGn0 and B̃Pn0 − B̃Gn0 are already
large at t = 0. In other words, away from t = 0 chiral-odd
twist-three matrix elements would not generically be small
compared with twist-two matrix elements.

The relations (64) and (65) may be of practical use
in lattice QCD calculations. Note that the form factors
on the left-hand sides belong to operators with one co-
variant derivative more than those on the right-hand sides
(counting the gluon field strength as the commutator of
two covariant derivatives). Operators with more derivatives
are less localized on the lattice and thus more affected by
errors. The form factors on the right-hand sides of (64)
and (65) have been or are being calculated in lattice QCD.
Together with lattice determinations of the renormalized
quark masses (see e.g. [41] and references therein) one may
thus use the equation of motion constraints to determine
the twist-three form factors in (64) and the twist-three
form factor combinations in (65). Alternatively, one may
evaluate the twist-three matrix elements on the lattice and
use (64) and (65) as constraints to reduce the errors in the
extracted form factors. Note that a separate determination
of AGni, BGni, ÃGni, B̃Gni would allow one to check the
often-used Wandzura-Wilczek approximation, which as-
sumes that matrix elements of (chiral-even or chiral-odd)
quark-antiquark-gluon operators are small.
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5 Summary

Generalized transversity distributions at zero skewness ξ
describe the density of transversely polarized quarks in the
impact parameter plane. We have derived the correspond-
ing expression (8) and analyzed its detailed structure. The
momentum space distributions HT , ET and H̃T at t = 0
and ξ = 0 describe simple average features of this den-
sity according to (13), (17), (19). The formulae for the
impact parameter density of quarks closely resemble those
for transverse momentum dependent distributions. This re-
semblance exhibits for instance a correspondence between
the Sivers function f⊥1T and the nucleon helicity-flip dis-
tribution E, and between the Boer-Mulders function h⊥1
and ET + 2H̃T . It would be interesting to investigate the
correspondence between impact parameter and transverse
momentum dependent distributions at a dynamical level,
as has been done for f⊥1T and E in [23, 24]. The distribu-
tion of quarks in the impact parameter plane is no longer
rotationally symmetric as soon as either the proton or the
quark are transversely polarized, and the preferred direc-
tion of transverse quark polarization is not isotropic even in
an unpolarized proton. Preliminary results of lattice QCD
calculations suggest that such effects may be quite large.

The impact parameter density of quarks for arbitrary
polarization can be obtained from the spin matrix (34).
This matrix is positive semidefinite, which leads to simple
bounds on generalized parton distributions, as special cases
of the general results in [32]. The most stringent inequalities
hold in impact parameter space. A combination of HT and
H̃T is bounded by H according to (40), and (41) extends
the bound (36) previously given by Burkardt [29]. The size
of the chiral-odd distributions thus has consequences also
in the purely chiral-even sector, since it restricts the possi-
bilities to saturate the inequality (36), which involves only
E, H and H̃. By suitable integration over the impact pa-
rameter, one obtains bounds in momentum space. Bounds
can also be given for Mellin moments that correspond to
the sum of quark and antiquark distributions. Since the
axial current has different charge conjugation parity than
the vector and tensor currents, this requires bounds with-
out the quark helicity distribution H̃, like (46), (47) and
(49), (50). Such bounds can for instance be applied to the
results of lattice QCD calculations. It will be interesting to
see by how much bounds are violated for Mellin moments
corresponding to the difference of quark and antiquark dis-
tributions, since this is a measure for the importance of
antiquark contributions in these moments.

The divergence and the curl of the vector field F i
T (x, b),

which describes transverse quark polarization in the im-
pact parameter plane, are matrix elements of the total
derivatives of twist-two quark-antiquark operators. These
derivative operators are related to twist-three operators via
the QCD equations of motion, namely to scalar or pseu-
doscalar quark currents and to quark-antiquark-gluon op-
erators. Such relations have been investigated for forward
parton distributions and for meson distribution amplitudes
in the literature. In (64) and (65) we give the corresponding
relations for the form factors parameterizing the first two

Mellin moments of generalized parton distributions. This
can easily be extended to higher moments. Such relations
may be of use for exploring the twist-three sector in lattice
QCD calculations.
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for useful remarks on the manuscript. This work is supported
by the Helmholtz Association, contract number VH-NG-004,
and the Integrated Infrastructure Initiative “Study of strongly
interacting matter” of the European Union under contract num-
ber RII3-CT-2004-506078.

References

1. W. Vogelsang, hep-ph/0309295; A. Metz, hep-ph/0412156;
V. Barone, hep-ph/0502108

2. K. Goeke, M.V. Polyakov and M. Vanderhaeghen, Prog.
Part. Nucl. Phys. 47, 401 (2001) [hep-ph/0106012]

3. M. Diehl, Phys. Rep. 388, 41 (2003) [hep-ph/0307382]
4. A.V. Belitsky and A.V. Radyushkin, hep-ph/0504030
5. M. Burkardt, Phys. Rev. D 62, 071503 (2000), Erratum-

ibid. D 66, 119903 (2002) [hep-ph/0005108]
6. M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003) [hep-ph/

0207047]
7. J.C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev.

D 56, 2982 (1997) [hep-ph/9611433]
8. P. Hoodbhoy and X.D. Ji, Phys. Rev. D 58, 054006 (1998)

[hep-ph/9801369]
9. M. Diehl, Eur. Phys. J. C 19, 485 (2001) [hep-ph/0101335]

10. D.Y. Ivanov, B. Pire, L. Szymanowski and O.V. Teryaev,
Phys. Lett. B 550, 65 (2002) [hep-ph/0209300]

11. M. G’́ockeler et al. [QCDSF Collaboration], Phys. Rev.
Lett. 92, 042002 (2004) [hep-ph/0304249]
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